If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-432=0
a = 1; b = -40; c = -432;
Δ = b2-4ac
Δ = -402-4·1·(-432)
Δ = 3328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3328}=\sqrt{256*13}=\sqrt{256}*\sqrt{13}=16\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16\sqrt{13}}{2*1}=\frac{40-16\sqrt{13}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16\sqrt{13}}{2*1}=\frac{40+16\sqrt{13}}{2} $
| a-6=8-(9+|a | | a-6=8-(9+|a) | | 3(z-2)=(2z-1) | | X/3+7=x/5+9 | | -4n-1-6n=-7-1-n+6 | | X÷3+7=x÷5+9 | | (x^2-7x+11)^(x^2-13x+42)=1 | | 2/3(x+9)=10 | | -4x+-6+2=-x+5 | | 3×20=5x | | -4x+-6+2=-x | | x/1.45=0.3 | | w/3=-47 | | -8−9s=-10s | | q−21=24 | | 2–(5-x)=8 | | 2n+15/4=10n-9/4 | | -8a+3=5a+7= | | 9r−8=8r | | 10m+8=8m | | 3g-6(g=8)=42 | | 5(3x-7)=10x+15 | | w(-2.5)=8 | | -6x-+1-7=-7x+2 | | c(-9)+6=14 | | 9r−10=8+7r | | y+5/12=5/8 | | 10+2c=4c | | 0.2a+5=21 | | 2/5c+401/5c=-9 | | 3/8=x/7 | | 8-9/x=4=3/x |